Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo

نویسندگان

  • Jonathan M. Cayce
  • Robert M. Friedman
  • E. Duco Jansen
  • Anita Mahavaden-Jansen
  • Anna W. Roe
چکیده

Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=250 μs, radiant exposure=0.01-0.55 J/cm(2), fiber size=400 μm, repetition rate=50-200 Hz) was used to stimulate the somatosensory cortex of anesthetized rats, and its efficacy was assessed using intrinsic optical imaging and electrophysiology techniques. INS was found to evoke an intrinsic response of similar magnitude to that evoked by tactile stimulation (0.3-0.4% change in intrinsic signal magnitude). A maximum deflection in the intrinsic signal was measured to range from 0.05% to 0.4% in response to INS, and the activated region of cortex measured approximately 2mm in diameter. The intrinsic signal magnitude increased with faster laser repetition rates and increasing radiant exposures. Single unit recordings indicated a statistically significant decrease in neuronal firing that was observed at the onset of INS stimulation (0.5s stimulus) and continued up to 1s after stimulation onset. The pattern of neuronal firing differed from that observed during tactile stimulation, potentially due to a different spatial integration field of the pulsed infrared light compared to tactile stimulation. The results demonstrate that INS can be used safely and effectively to manipulate neuronal firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in a...

متن کامل

Modulatory Effects of Memantine on Neuronal Response Properties in Rat Barrel Cortex

Introduction: Memantine as N-Methyl-D-aspartic acid (NMDA) receptor antagonist is used in some neurological disorders. It has been reported that memantine has modulatory effects on the somatosensory information processing in healthy subjects. This study investigated the effect of memantine on electrophysiological properties of barrel cortex neurons in male rats. Methods: Single unit recording ...

متن کامل

Reassessment of activity-related optical signals in somatosensory cortex by an algorithm with wavelength-dependent path length.

Incorporating the wavelength dependence of the scattering effect into a simple linear multicomponent analysis of intrinsic optical signals, we have reexamined the change in the hemoglobin (Hb) concentration and the origins of intrinsic signals in somatosensory cortex evoked with electrical stimulation of the hind limb (5 Hz, 2 s) of anesthetized rat. The concept of the analysis was to separate ...

متن کامل

Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca(2+)) concentration is important for astrocytes as Ca(2+) surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarc...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 2011